Asymptotic Safety and Matter

Jan Schröder

Department of Physics and Astronomy TPP Group University of Sussex

> ERG 2014 22.09.2014

Why Should Matter Matter? - I

matter influences the RG of Yang-Mills Theory $SU(N_c)$ one loop beta function:

$$\beta(g) = -\left(\frac{11}{3} N_c - \frac{2}{3} N_F\right) \frac{g^3}{16 \pi^2} + \mathcal{O}\left(g^5\right)$$

- *N_c*: number of colours
- N_F : number of fundamental Dirac fermions
- fermions contribute with opposite sign

$$N_{F, ext{critical}} = rac{11}{2} N_c$$

matter can spoil asymptotic freedom in Yang-Mills

Why Should Matter Matter? - II

one loop β -function of Newton's coupling g:

$$\beta_{g} = (2+\eta)g$$

$$\eta = -(21-n_{\text{scalar}}-2n_{\text{fermion}}+4n_{\text{vector}})\frac{g}{6\pi} + \mathcal{O}(g^{2})$$

- non-gaussian fixed point for $\eta = -2$
- matter fields contribute with different signs at one-loop level
- $\blacksquare \rightarrow$ potential destabilisation of the fixed point through matter

Can asymptotic safety be spoiled?

Matter Couples to Gravity

matter couples into the asymptotic safety scenario

- feedback of non-self interacting matter (scalars, Weyl, Maxwell, RS) into the Einstein-Hilbert β-functions of gravity → constraints on the number of matter fields compatible with AS scenario in 4D ¹
- recent upgrade that uses a bi-metric setup ²
- fixed point can be spoiled through
 - disappearance
 - repulsiveness
 - unphysical coupling values (negative g)
 - loss of predictivity

¹Percacci Perini 10.1103/PhysRevD.67.081503 ²Dona Eichhorn Percacci ARXIV:1311.2898

f(R) gravity with minimal matter

Setup

- *d* = 4
- minimally coupled + non-self interacting matter
- real scalars, Dirac fermions, Maxwell vectors
- gravity in the polynomial f(R) approximation (up to R⁵)
- single-metric approximation
- \blacksquare beta functions are singular for $\lambda=1/2$

Pure Gravity

- physical solution established up to R⁷⁰ order ³
- $\lambda pprox 0.156$ and g pprox 0.852
- convergence pattern in the couplings
- three relevant eigendirections:
 - one complex conjugate pair (visible at EH)
 - one purely real (introduced at R^2)
- convergence pattern in the eigenvalues

³Falls Litim Nikolakopoulos Rahmede hep-th/1301.4191, Falls Litim Nikolakopoulos Schroeder to appear

Scalars and Gravity

- tested up to R⁵
- fixed point candidate with g > 0 visible for all n_{scalar}
- three relevant eigenvalues persist
- at finite *n*_{scalar}: relevant cc eigenvalue pair turns real

many scalar limit

$$\lambda \to 1/2$$

$$g \sim 1/n_{
m scalar}
ightarrow 0+$$

• increasing relevant eigenvalue $\sim \sqrt{n_{\rm scalar}}$

 \blacksquare large scalar limit available \rightarrow one EV grows large, hinting a failure of the approximation

Introduction f(R) and matter Conclusion

Many Scalars in R^3 - Relevant Directions

Figure: Real part of the critical exponent θ for different number of scalar fields n_s

Fermions and Gravity

- tested up to R⁵
- continuously deformed pure gravity fixed point ends at finite $n_{\text{fermion}} = \mathcal{O}(1)$
- interplay with other matter types alters this bound!
- three relevant eigenvalues persist

many fermion limit

- no physical limit for R and R²
- physical limit opens for R³ and higher
 - $\lambda
 eq 1/2$ remains finite and $g \sim 1/n_{
 m fermion}$
 - three (two at R³) relevant and real directions

Introduction f(R) and matter Conclusion

Fermions - Critical Exponents in R^4

Figure: The spectrum of critical exponents θ_i is given as a function of the number of fermion fields n_D for the deformed pure gravity line in the R^4 approximation.

Vectors and Gravity

- tested up to R⁵
- continuously deformed pure gravity fixed point ends at finite n_{vector} = O(100)
- at least two relevant eigenvalues
- eigenvalues can turn from irrelevant to relevant with increasing n_{vector} - predictivity?

many vector limit

- exists for all approximations + consistent with Einstein-Hilbert
- $\lambda
 ightarrow 3/8$ and $g \sim 1/n_{
 m vector}$
- two or three relevant directions consistently

Introduction f(R) and matter Conclusion

Vectors - Critical Exponents in R^4

Figure: The spectrum of critical exponents θ_i is given as a function of the number of vector fields n_M for the deformed pure gravity line in the R^4 approximation.

Conclusions

examined minimally coupled matter in f(R) gravity up to R^5

- confirmed physical fixed points close to pure gravity
- bounds for fermions $\mathcal{O}(1)$ and vectors $\mathcal{O}(100)$
- approximation breakdown in the many scalar limit
- physical many fermion limit (R³ and beyond)
- physical many vector limit
- higher curvature invariants stabilise the many matter limit
- matter interplay first results: alteration of fermion bounds